论文标题
费米子CFT中的线路缺陷
Line Defects in Fermionic CFTs
论文作者
论文摘要
我们研究了尺寸的总neveu-yukawa通用类中费米子CFT中的线缺陷,$ 2 <d <4 $。这些CFT可以被描述为$ d = 4-ε$中的GROSS-NEVEU-YUKAWA(GNY)模型的IR固定点,也可以用作Gross-Neveu(GN)型号的UV固定点,可以使用$ 2 <d <4 $中的大型$ N $扩展来对其进行研究。这些模型通过在GNY描述中的标量字段或GN描述中的Fermion Biinear oberator中集成通过一条线路获得的自然线缺陷。我们使用Epsilon扩展和大型$ N $方法来计算缺陷RG流的Beta函数,并找到用于缺陷耦合的IR稳定固定点,从而为非平凡的IR DCFT提供了证据。我们还在固定点计算了一些DCFT可观测值,并检查与圆形缺陷相关的$ G $功能是否与缺陷RG流的$ G $ - 理论一致。
We study line defects in the fermionic CFTs in the Gross-Neveu-Yukawa universality class in dimensions $2<d<4$. These CFTs may be described as the IR fixed points of the Gross-Neveu-Yukawa (GNY) model in $d=4-ε$, or as the UV fixed points of the Gross-Neveu (GN) model, which can be studied using the large $N$ expansion in $2<d<4$. These models admit natural line defects obtained by integrating over a line either the scalar field in the GNY description, or the fermion bilinear operator in the GN description. We compute the beta function for the defect RG flow using both the epsilon expansion and the large $N$ approach, and find IR stable fixed points for the defect coupling, thus providing evidence for a non-trivial IR DCFT. We also compute some of the DCFT observables at the fixed point, and check that the $g$-function associated with the circular defect is consistent with the $g$-theorem for the defect RG flow.