论文标题
光学镊子阵列中分子之间的偶极自旋交换和纠缠
Dipolar spin-exchange and entanglement between molecules in an optical tweezer array
论文作者
论文摘要
由于它们的固有电偶极矩和丰富的内部结构,超速极性分子是有望用于量子计算和广泛量子模拟的候选量子。它们的长寿命分子旋转状态形成强大的Qubit,而分子之间的远距离偶极相互作用则提供了量子纠缠。使用分子光学镊子阵列,可以使用光学和微波场分别移动并分别向量子操作移动并分别解决,从而创建一个可扩展的量子平台。在这里,我们在光学镊子阵列中捕获的CAF分子成对的远程偶极自旋交流相互作用。我们通过编码有效的自旋 - $ \ frac {1} {2} $系统,将各向异性的相互作用控制 - $ \ frac {1} {2} {2} $ Quantum Xy模型。我们演示了一个两分(两分子)的门,以确定性地生成纠缠,这是所有量子信息应用程序的重要资源。使用交错的镊子阵列,我们证明了高保真单位分子的可寻址性。
Due to their intrinsic electric dipole moments and rich internal structure, ultracold polar molecules are promising candidate qubits for quantum computing and for a wide range of quantum simulations. Their long-lived molecular rotational states form robust qubits while the long-range dipolar interaction between molecules provides quantum entanglement. Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations using optical and microwave fields, creating a scalable quantum platform. Here, we demonstrate long-range dipolar spin-exchange interactions in pairs of CaF molecules trapped in an optical tweezer array. We control the anisotropic interaction and realize the spin-$\frac{1}{2}$ quantum XY model by encoding an effective spin-$\frac{1}{2}$ system into the rotational states of the molecules. We demonstrate a two-qubit (two-molecule) gate to generate entanglement deterministically, an essential resource for all quantum information applications. Employing interleaved tweezer arrays, we demonstrate high fidelity single site molecular addressability.