论文标题
来自特殊复杂结构的M理论模量
M-theory Moduli from Exceptional Complex Structures
论文作者
论文摘要
我们继续使用出色的广义几何形状,包括计算无限的模量空间,继续对通用Minkowski $ \ Mathcal {n} = 1 $,$ d = 4 $通量压缩的几何形状进行分析。背景可以分为两个类:type-0和type-3。对于0型,我们回顾了模量是如何来自标准的DE RHAM共同体学类别的。我们还认为,在合理的假设下,没有适当的来源来支持此类的紧凑型通量背景,因此唯一的解决方案实际上是$ g_2 $几何形状。对于Type-3背景,给定合适的$ \ partial'\ bar {\ partial}'$ - lemma,我们表明可以根据复杂的切线空间的涉及子群来计算模量。使用简单的频谱序列,我们通常证明通量的存在只能减少与无量情况相比的模量的数量。然后,我们使用形式主义来计算杂种M理论的模量,并表明它们按预期的是匹配双船体托环系统的模量。
We continue the analysis of the geometry of generic Minkowski $\mathcal{N} = 1$, $D = 4$ flux compactifications in M-theory using exceptional generalised geometry, including the calculation of the infinitesimal moduli spaces. The backgrounds can be classified into two classes: type-0 and type-3. For type-0, we review how the moduli arise from standard de Rham cohomology classes. We also argue that, under reasonable assumptions, there are no appropriate sources to support compact flux backgrounds for this class and so the only solutions are in fact $G_2$ geometries. For type-3 backgrounds, given a suitable $\partial ' \bar{\partial} ' $-lemma, we show that the moduli can be calculated from a cohomology based on an involutive sub-bundle of the complexified tangent space. Using a simple spectral sequence we prove quite generally that the presence of flux can only reduce the number of moduli compared with the fluxless case. We then use the formalism to calculate the moduli of heterotic M-theory and show they match those of the dual Hull-Strominger system as expected.