论文标题

非交通性赛车的急剧加权最大不平等

The sharp weighted maximal inequalities for noncommutative martingales

论文作者

Gałązka, Tomasz, Jiao, Yong, Osękowski, Adam, Wu, Lian

论文摘要

本文的目的是在半决赛von Neumann代数上建立加权最大$ L_P $ - Qualities。主要重点是$ L_P $常数对所涉及的重量特征的最佳依赖性。作为应用程序,我们为Hardy-Little Wood最大运算符的非交通性版本建立了加权估计,并为广泛的单数积分的非交通性最大截断提供了加权界限。

The purpose of the paper is to establish weighted maximal $L_p$-inequalities in the context of operator-valued martingales on semifinite von Neumann algebras. The main emphasis is put on the optimal dependence of the $L_p$ constants on the characteristic of the weight involved. As applications, we establish weighted estimates for the noncommutative version of Hardy-Littlewood maximal operator and weighted bounds for noncommutative maximal truncations of a wide class of singular integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源