论文标题

阿诺索夫的浮子理论在维度三个方面流动

Floer theory of Anosov flows in dimension three

论文作者

Cieliebak, Kai, Lazarev, Oleg, Massoni, Thomas, Moreno, Agustin

论文摘要

通过Mitsumatsu和Hozoori的构造,在四个歧管$ [ - 1,1] \ times m $上,在四个歧管$ [-1,1] \ times m $上的平滑Anosov流动产生了liouville结构,这不是温斯坦。我们称其为相关的Anosov Liouville域。它的定义很好地定义为同喻,仅取决于原始Anosov流的同型类别。然后,它的符号不变性是流动的不变性。我们通过包装的福卡亚类别研究Anosov Liouville域的符号几何形状,我们希望这是Anosov流的强大不变性。简单的封闭轨道上的拉格朗日圆柱体跨越天然的$ a_ \ infty $ -subcategory,即流量的轨道类别。我们表明,它不满足Abouzaid的一代标准;此外,它是“非常大”的,从某种意义上说,任何严格的子家庭都不会分裂生成。这与韦恩斯坦案例相反,温斯坦案件的临界点起着轨道的作用。对于对应于圆环上线性Anosov差异性的域的域,我们表明没有封闭的精确的Lagrangians是可定向的,投射的平面或klein瓶。相比之下,对于在$ g \ geq 2 $的双曲表面上的测量流动(对应于麦克杜夫示例),我们为每个嵌入的封闭的地球植物构建了一个精确的拉格朗日圆环,从而获得至少$ 3G-3 $ tori,这不是吉尔顿的同位素与彼此相互相互互补。对于Anosov流的这两种典型案例,我们明确计算了相关域的符合性共同体,以及拉格朗日圆柱体的包裹的浮子共同体以及几种裤子产品。

A smooth Anosov flow on a closed oriented three manifold $M$ gives rise to a Liouville structure on the four manifold $[-1,1]\times M$ which is not Weinstein, by a construction of Mitsumatsu and Hozoori. We call it the associated Anosov Liouville domain. It is well defined up to homotopy and only depends on the homotopy class of the original Anosov flow; its symplectic invariants are then invariants of the flow. We study the symplectic geometry of Anosov Liouville domains, via the wrapped Fukaya category, which we expect to be a powerful invariant of Anosov flows. The Lagrangian cylinders over the simple closed orbits span a natural $A_\infty$-subcategory, the orbit category of the flow. We show that it does not satisfy Abouzaid's generation criterion; it is moreover "very large", in the sense that is not split-generated by any strict sub-family. This is in contrast with the Weinstein case, where critical points of a Morse function play the role of the orbits. For the domain corresponding to the suspension of a linear Anosov diffeomorphism on the torus, we show that there are no closed exact Lagrangians which are either orientable, projective planes or Klein bottles. By contrast, in the case of the geodesic flow on a hyperbolic surface of genus $g \geq 2$ (corresponding to the McDuff example), we construct an exact Lagrangian torus for each embedded closed geodesic, thus obtaining at least $3g-3$ tori which are not Hamiltonian isotopic to each other. For these two prototypical cases of Anosov flows, we explicitly compute the symplectic cohomology of the associated domains, as well as the wrapped Floer cohomology of the Lagrangian cylinders, and several pair-of-pants products.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源