论文标题
在不同的热条件下复杂地形上近源风开发和污染分散体的模拟
Simulations of near-source wind development and pollution dispersion over complex terrain under different thermal conditions
论文作者
论文摘要
在不同的气象条件下,开发了一种解决稳态雷诺平均纳尔德 - 纳维尔 - 斯托克斯(RANS)方程的计算流体动力学(CFD)模型。在一个复杂的地形上建立了6.4 km x 6.4 km的计算域,高度在地面上方1公里。利用来自多个可用来源的气象数据来获得风速,空气温度,湍流动能(TKE)及其耗散速度的边界条件。为了评估模型,部署了四个动态计的监视网络。将模型预测与风速的测量和当地可乐植物发出的SO2浓度进行了比较。比较表明,预测的风速接近得出的平均风速,在记录相对快速风速的一个位置,平均误差在10%以内。 CFD模型还预测了各个高程的多个位点各个位点的风速变化的正确趋势。考虑到地形和气象条件的复杂性质,该模型还为多种情况提供了SO2浓度的良好预测。
A computational fluid dynamics (CFD) model that solves the steady-state Reynolds-Averaged Navier-Stokes (RANS) equations for buoyant compressible pollution dispersion under different meteorological conditions is developed. A 6.4 km by 6.4 km computational domain over a complex terrain with a height of 1 km above the ground surface is created. Meteorological data from multiple available sources are utilized to obtain boundary conditions of wind speed, air temperature, turbulent kinetic energy (TKE), and its dissipation rate. To evaluate the model, a monitoring network of four anemometers is deployed. Model predictions are compared with measurements of wind speed and the concentration of SO2 emitted by a local coke plant. Comparisons show that the predicted wind speeds are reasonably close to the measured mean wind speeds and the average error is within 10 percent at one location where relative fast wind speeds are recorded. The CFD model also predicts the correct trend of varying wind speeds across multiple sites of different elevations. The model also provides good predictions of SO2 concentrations for multiple cases, considering the complex nature of the terrain and meteorological conditions.