论文标题
超越线性潮汐:中子星的非线性潮汐响应对二元灵感的重力波形的影响
Beyond the linear tide: impact of the non-linear tidal response of neutron stars on gravitational waveforms from binary inspirals
论文作者
论文摘要
融合二进制中子星的潮汐相互作用修改了灵感的动力学,因此以额外的相移形式在其重力波(GW)信号上刻印一个签名。我们需要准确的模型来进行潮汐相移,以限制观察结果的状态上核方程。在以前的研究中,通常通过将潮汐视为对扰动潮汐场的线性响应来构建GW波形模型。在这项工作中,由于流体动力学的三模式相互作用,我们结合了非线性校正,并展示了它们如何提高波形模型的准确性和解释能力。我们为轨道和模式和分析得出系统平衡配置的解决方案的耦合微分方程求解并求解了耦合的微分方程。我们的分析解决方案与合并之前的数字解决方案非常吻合,仅涉及代数关系,从而可以在大型参数空间上对不同状态方程式进行快速移动和波形评估。我们发现,在牛顿级,非线性流体效应可以以1000 Hz的GW频率以$ \ gtrsim 1 \,{\ rm radian} $增强潮汐相移,对应于$ 10-20 \%$ $校正与线性理论的校正。合并附近的附加相位移位的规模与仅解释线性潮汐的数值相对性和理论预测之间的差异是一致的。因此,非线性流体效应在解释数值相对性的结果以及为当前和将来的GW检测器的波形模型的构建中很重要。
Tidal interactions in coalescing binary neutron stars modify the dynamics of the inspiral and hence imprint a signature on their gravitational wave (GW) signals in the form of an extra phase shift. We need accurate models for the tidal phase shift in order to constrain the supranuclear equation of state from observations. In previous studies, GW waveform models were typically constructed by treating the tide as a linear response to a perturbing tidal field. In this work, we incorporate non-linear corrections due to hydrodynamic three- and four-mode interactions and show how they can improve the accuracy and explanatory power of waveform models. We set up and numerically solve the coupled differential equations for the orbit and the modes and analytically derive solutions of the system's equilibrium configuration. Our analytical solutions agree well with the numerical ones up to the merger and involve only algebraic relations, allowing for fast phase shift and waveform evaluations for different equations of state over a large parameter space. We find that, at Newtonian order, non-linear fluid effects can enhance the tidal phase shift by $\gtrsim 1\,{\rm radian}$ at a GW frequency of 1000 Hz, corresponding to a $10-20\%$ correction to the linear theory. The scale of the additional phase shift near the merger is consistent with the difference between numerical relativity and theoretical predictions that account only for the linear tide. Non-linear fluid effects are thus important when interpreting the results of numerical relativity and in the construction of waveform models for current and future GW detectors.