论文标题

混乱的马鞍和内部危机

Chaotic saddles and interior crises in a dissipative nontwist system

论文作者

Baroni, Rodrigo Simile, de Carvalho, Ricardo Egydio, Caldas, Iberê Luiz, Viana, Ricardo Luiz, Morrison, Philip J

论文摘要

我们考虑了标准非翼映射的耗散版本。非翼系统具有强大的传输屏障,称为剪切曲线,当引入耗散时,它将成为无剪切的吸引子。该吸引子可以根据控制参数而定期或混乱。混乱的吸引子可以随着参数的变化而发生突然的定性变化。这些变化称为危机,在内部危机中,吸引子突然扩大。混乱的马鞍是非吸引人的混乱集,在非线性系统的动力学中起着基本作用,它们负责混乱的瞬变,分形盆地边界,混乱的散射,并介导内部危机。在这项工作中,我们讨论了在耗散的非翼系统中创建混乱的马鞍及其产生的内部危机。我们展示了两个马鞍的存在如何增加瞬时时间并分析危机引起的间歇性。

We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems, they are responsible for chaotic transients, fractal basin boundaries, chaotic scattering and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increase the transient times and analyze the phenomenon of crisis induced intermittency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源