论文标题

长度的双射击 - $ 5 $ $ 5 $的排列模式

A bijection for length-$5$ patterns in permutations

论文作者

Chen, Joanna N., Lin, Zhicong

论文摘要

$(31245,32145,31254,32154)$ - 避免排列和$(31425,32415,31524,32514)$之间的两次培训,构建了五个经典的设置统计数据。与Baril-Vajnovszki和Martinez的两种置换编码相结合证明了Gao和Kitaev提出的列举猜想。此外,事实证明,公共计数序列的生成函数被证明是代数。

A bijection between $(31245,32145,31254,32154)$-avoiding permutations and $(31425,32415,31524,32514)$-avoiding permutations is constructed, which preserves five classical set-valued statistics. Combining with two codings of permutations due respectively to Baril--Vajnovszki and Martinez--Savage proves an enumerative conjecture posed by Gao and Kitaev. Moreover, the generating function for the common counting sequence is proved to be algebraic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源