论文标题
镍界面磁相的耦合
Coupling of Magnetic Phases at Nickelate Interfaces
论文作者
论文摘要
在这项工作中,我们提出了一个由人为分层的材料构建的模型系统,使我们能够在长度长度上了解磁相的相互关系与金属构造阶段的相互关系,并为设备中材料的设计和控制提供了新的策略。人工模型系统由由Smnio $ _3 $和NDNIO $ _3 $层制成的超级晶格组成 - 引人入胜的稀土镍家族的两个成员,具有不同的金属对绝缘体和磁过渡温度。通过结合两种互补技术 - 谐振弹性X射线散射和MUON自旋松弛 - 我们显示了磁性在这个复杂的多组分系统中如何演变为温度和超晶格周期性的函数。我们证明,抗铁磁和顺磁性相之间的耦合的长度尺度比电子金属 - 绝缘体相变的长度更长,尽管它是子公司的子公司。这可以通过Landau理论来解释 - 其中考虑了块状磁能以及磁相和非磁相之间的梯度成本。这些结果清楚地了解了共享相同顺序参数的系统中磁转换的耦合。
In this work we present a model system built out of artificially layered materials, allowing us to understand the interrelation of magnetic phases with that of the metallic-insulating phase at long length-scales, and enabling new strategies for the design and control of materials in devices. The artificial model system consists of superlattices made of SmNiO$_3$ and NdNiO$_3$ layers -- two members of the fascinating rare earth nickelate family, having different metal-to-insulator and magnetic transition temperatures. By combining two complementary techniques -- resonant elastic x-ray scattering and muon spin relaxation -- we show how the magnetic order evolves, in this complex multicomponent system, as a function of temperature and superlattice periodicity. We demonstrate that the length scale of the coupling between the antiferromagnetic and paramagnetic phases is longer than that of the electronic metal-insulator phase transition -- despite being subsidiary to it. This can be explained via a Landau theory -- where the bulk magnetic energy plus a gradient cost between magnetic and non magnetic phases are considered. These results provide a clear understanding of the coupling of magnetic transitions in systems sharing identical order parameters.