论文标题
海马中的尖峰时间神经代码的代数方法
An algebraic approach to spike-time neural codes in the hippocampus
论文作者
论文摘要
尽管长期以来通过峰值时间模式进行时间编码对神经科学感兴趣,但对于尖峰时间代码来说可能有用的特定结构仍不清楚。在这里,我们使用离散数学的技术介绍了一种新的分析方法来研究尖峰时间代码。我们专注于啮齿动物海马中``阶段进动物''的现象。在物理轨道上的导航和学习过程中,相对于当地人口活动的振荡,啮齿动物大脑中的特定细胞形成了高度结构化的模式。相进动的研究主要集中在其在突触可塑性和记忆形成中的良好作用。相对较少的关注是,阶段进动代表了尖峰时间神经代码的最佳候选者之一。该代码的确切性质仍然是一个悬而未决的问题。在这里,我们通过单个尖峰时间在物理空间中的运算符映射点得出一个分析表达式,以将其定为复数。该操作员的特性突出了海马尖峰模式中过去和未来之间的特定关系。重要的是,这种方法概括了此处研究的特定现象,提供了一种新技术来研究在感觉编码和运动行为期间发现的尖峰时间序列中的神经代码。然后,我们基于该操作员介绍了一种基于尖峰的新型解码算法,该算法仅使用动物的初始位置和尖峰时代的模式成功解码了模拟动物的轨迹。该解码器在尖峰时代对噪声的稳健性,并且在时间尺度上工作几乎比通常使用平均发射速率的解码器短的数量级。这些结果说明了基于峰值模式中对称性的离散方法的实用性,以洞悉神经系统的结构和功能。
Although temporal coding through spike-time patterns has long been of interest in neuroscience, the specific structures that could be useful for spike-time codes remain highly unclear. Here, we introduce a new analytical approach, using techniques from discrete mathematics, to study spike-time codes. We focus on the phenomenon of ``phase precession'' in the rodent hippocampus. During navigation and learning on a physical track, specific cells in a rodent's brain form a highly structured pattern relative to the oscillation of local population activity. Studies of phase precession largely focus on its well established role in synaptic plasticity and memory formation. Comparatively less attention has been paid to the fact that phase precession represents one of the best candidates for a spike-time neural code. The precise nature of this code remains an open question. Here, we derive an analytical expression for an operator mapping points in physical space, through individual spike times, to complex numbers. The properties of this operator highlight a specific relationship between past and future in hippocampal spike patterns. Importantly, this approach generalizes beyond the specific phenomenon studied here, providing a new technique to study the neural codes within spike-time sequences found during sensory coding and motor behavior. We then introduce a novel spike-based decoding algorithm, based on this operator, that successfully decodes a simulated animal's trajectory using only the animal's initial position and a pattern of spike times. This decoder is robust to noise in spike times and works on a timescale almost an order of magnitude shorter than typically used with decoders that work on average firing rate. These results illustrate the utility of a discrete approach, based on the symmetries in spike patterns, to provide insight into the structure and function of neural systems.