论文标题
McIntosh关于Franel积分和两个概括的猜想的证明
Proofs of McIntosh's Conjecture on Franel Integrals and Two Generalizations
论文作者
论文摘要
我们提供了理查德·麦金托什(Richard McIntosh)在1996年对弗拉内尔积分值的猜想的证明,$ \ int_0^1((ax))((ax))((bx))((cx))(((ex))\,dx,$ $,其中$((x))$是第一个定期bernoulli函数。其次,我们扩展了想法,以证明$$ \ int_0^1((a_1x))的类似定理((a_2x))\ cdots(((a__ {n} x))\,dx。$$ 最后,我们证明了进一步的概括,其中$((x))$被任何特定的bernoulli函数替换为奇数索引。
We provide a proof of a conjecture made by Richard McIntosh in 1996 on the values of the Franel integrals, $$\int_0^1((ax))((bx))((cx))((ex))\,dx,$$ where $((x))$ is the first periodic Bernoulli function. Secondly, we extend our ideas to prove a similar theorem for $$\int_0^1((a_1x))((a_2x))\cdots ((a_{n}x))\,dx.$$ Lastly, we prove a further generalization in which $((x))$ is replaced by any particular Bernoulli function with odd index.