论文标题

光谱极限法作为解决可居住区中多云的超级球星大气的云成分和宜居性

Spectropolarimetry as a Means to Address Cloud Composition and Habitability for a Cloudy Exoplanetary Atmosphere in the Habitable Zone

论文作者

West, Robert A., Dumont, Philip, Hu, Renyu, Natraj, Vijay, Breckinridge, James, Chen, Pin

论文摘要

在我们的太阳系中,金星的​​密集云覆盖的大气是如何使用偏振法来获取有关云组成和粒子平均半径的信息的一个例子。随着目前的兴趣高于发现和表征在液态水中存在的宜居区域的极性行星,利用直接成像的系外行星的光谱测量值可能通过其他方式提供无法获得的关键信息。原则上,光谱极化测量可以确定酸度是否导致云中的水活动过低。为此,我们表明在400 nm -1000 nm范围内的光谱仪测量值将需要将线性极化解析至大约1%或更高的精度,从而从光学厚的云笼罩的外部外球体中进行反射的星光。我们通过模拟大型空间望远镜(HABEX设计,但对于直径为6 m的主镜)来评估实现这一目标的可能性。我们的模拟包括考虑各种来源的噪声。我们提供有关限制的指导,这些限制需要对工具两极分化,以解决我们讨论的科学问题。对于光子受限的噪声,对于较小的较小的系外行星,对于较小的半径(10接地半径)的行星,需要在一个小时内保持一小时的秩序,具体取决于星形分离的分离,行星半径,相位角度,相位角度和所需的不确定性。我们讨论对表面化学和宜居性的影响。

In our solar system, the densely cloud-covered atmosphere of Venus stands out as an example of how polarimetry can be used to gain information on cloud composition and particle mean radius. With current interest running high on discovering and characterizing extrasolar planets in the habitable zone where water exists in the liquid state, making use of spectropolarimetric measurements of directly-imaged exoplanets could provide key information unobtainable through other means. In principle, spectropolarimetric measurements can determine if acidity causes water activities in the clouds to be too low for life. To this end, we show that a spectropolarimeter measurement over the range 400 nm - 1000 nm would need to resolve linear polarization to a precision of about 1% or better for reflected starlight from an optically thick cloud-enshrouded exoplanet. We assess the likelihood of achieving this goal by simulating measurements from a notional spectropolarimeter as part of a starshade configuration for a large space telescope (a HabEx design, but for a 6 m diameter primary mirror). Our simulations include consideration of noise from a variety of sources. We provide guidance on limits that would need to be levied on instrumental polarization to address the science issues we discuss. For photon-limited noise, integration times would need to be of order one hour for a large radius (10 Earth radii) planet to more than 100 hours for smaller exoplanets depending on the star-planet separation, planet radius, phase angle and desired uncertainty. We discuss implications for surface chemistry and habitability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源