论文标题

部分可观测时空混沌系统的无模型预测

Strong Quantization of Current-carrying Electron States in $δ$-layer Systems

论文作者

Mamaluy, Denis, Mendez, Juan P.

论文摘要

我们提出了一项开放系统量子力学的真实空间研究,对磷$δ$ - 层系统中的导电性能和尺寸量化,这对于它们的超越摩尔和量子计算应用程序都很有趣。最近,已经证明,与传统方法(即周期性或dirichlet边界条件)相比,开放系统量子机械处理与高电导性,高度限制系统的ARPES测量提供了更加准确的匹配,并且此外,它允许从第一原理中准确预测此类系统的导电性能的准确预测。在这里,我们揭示了对设备宽度$ W <10 $ 〜nm的量化效果很强,我们首次表明,传播模式的数量不仅决定了电导率,而且决定了电流携带电子状态的独特空间分布。对于$ w> 10 $ 〜nm,量化效果实际上消失了,电导率趋向于无限宽的设备的值。

We present an open-system quantum-mechanical real-space study of the conductive properties and size quantization in phosphorus $δ$-layers systems, interesting for their beyond-Moore and quantum computing applications. Recently it has been demonstrated that an open-system quantum mechanical treatment provides a much more accurate match to ARPES measurements in highly-conductive, highly-confined systems than the traditional approaches (i.e. periodic or Dirichlet boundary conditions) and, furthermore, it allows accurate predictions of conductive properties of such systems from the first principles. Here we reveal that quantization effects are strong for device widths $W<10$~nm, and we show, for the first time, that the number of propagating modes determines not only the conductivity, but the distinctive spatial distribution of the current-carrying electron states. For $W>10$~nm, the quantization effects practically vanish and the conductivity tends to the infinitely-wide device's values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源