论文标题
一个简单的子网格模型,用于宇宙射线对银河尺度的影响
A Simple Sub-Grid Model For Cosmic Ray Effects on Galactic Scales
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGN) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure dominated circum-galactic medium (CGM). But explicit CR-magneto-hydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved ISM phase structure. We therefore present an intentionally extremely-simplified sub-grid model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytic models including some approximate CR effects on galactic (>kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently-developed sub-grid models for radiative feedback, and allows for a simple constant parameterization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star-particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty.