论文标题

在使用SAT和ILP求解器的相互依存网络中找到关键节点

Finding Critical Nodes in Interdependent Networks with SAT and ILP Solvers

论文作者

Hida, Kyozo, Tsuchiya, Tatsuhiro

论文摘要

基础架构系统(例如电力系统)通常会遇到级联故障。将基础架构系统建模为相互依存网络的集合,最近引起了人们的注意,以解释级联故障。在这项研究中,我们提出了一种方法,可以在相互依存的网络中找到一组关键节点。对于整数k,我们说如果这些k节点的初始失败导致所有集合k节点之间最严重的级联故障,则一组k节点至关重要。这种方法采用了Buldyrev等人提出的相互依赖网络的开创模型,如果配对网络中的连接丢失,则在网络中发生新的链接失败。找到关键节点的问题是NP-HARD;因此,该方法的目的是在可行的时间中准确解决中等大小的问题实例的问题。提出的方法包括两个阶段。在第一阶段,通过反复解决布尔可满足问题来计算故障传播阶段的最大数量。然后在第二阶段使用该数字,其中使用整数线性编程计算临界节点的集合。将这种方法应用于各种问题实例的结果表明,该方法对于至少30个节点是可行的,并且可以用作比较启发式解决方案的性能的基线。

Infrastructure systems, such as power systems, often experience cascading failures. Modeling an infrastructure system as a collection of interdependent networks has recently received attention as a way to explain cascading failures. In this study, we propose an approach to find the set of critical nodes in an interdependent network. For an integer k, we say that a set of k nodes is critical if the initial failures of these k nodes result in the most severe cascading failure among all sets of k nodes. This approach adopts the seminal model of interdependent networks proposed by Buldyrev et al., in which new link failures occur in a network if the connectivity is lost in the paired network. The problem of finding critical nodes is NP-hard; thus the aim of the approach is to accurately solve the problem in feasible time for moderate-size problem instances. The proposed approach consists of two phases. In the first phase, the maximum number of failure propagation stages is computed by repeatedly solving the Boolean satisfiability problem. This number is then used in the second phase, where the set of critical nodes is computed using integer linear programming. The results of applying this approach to a variety of problem instances demonstrate that the approach is feasible for up to at least 30 nodes and can be used as the baseline to compare the performance of heuristic solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源