论文标题

在平均值公式上,用于晶格的多个金额及其双重公式

On a mean value formula for multiple sums over a lattice and its dual

论文作者

Strömbergsson, Andreas, Södergren, Anders

论文摘要

我们证明了罗杰斯在$ r^n $中的单模型晶格中的Rogers的平均值公式的广义版本,该版本的平均值比晶格$ l $及其dual $ l^*$具有多值的平均值。作为应用程序,我们证明,对于$ l $,相对于sl $(n,r)$ - 不变的概率度量,在大尺寸$ n $的限制下,由非零矢量$ \ pm x $ in L的长度确定的量,一方面是零零的$ \ pm pm x'$ flys of pm x'$ \ l^y y y $ \ l^*线,强度为1/2。

We prove a generalized version of Rogers' mean value formula in the space $X_n$ of unimodular lattices in $R^n$, which gives the mean value of a multiple sum over a lattice $L$ and its dual $L^*$. As an application, we prove that for $L$ random with respect to the SL$(n,R)$-invariant probability measure, in the limit of large dimension $n$, the volumes determined by the lengths of the non-zero vectors $\pm x$ in L on the one hand, and the non-zero vectors $\pm x'$ in $L^*$ on the other hand, converge weakly to two independent Poisson processes on the positive real line, both with intensity 1/2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源