论文标题
全息感知表示的内存分解
In-memory factorization of holographic perceptual representations
论文作者
论文摘要
感官信号的组成因素的解开是感知和认知的核心,因此对于未来的人工智能系统来说是一项关键任务。在本文中,我们提出了一种能够通过利用脑启发的高维度计算和与基于纳米级记忆设备的模拟内存计算相关的固有随机性来有效地分解全息感知表示的计算发动机。这种迭代中的内存因子化合物被证明可以解决至少五个较大的问题,否则无法解决,同时也大大降低了计算时间和空间的复杂性。我们通过使用基于相位变化的回忆设备的两个内存计算芯片来提供有关因子器的大规模实验证明。主要的矩阵矢量乘以在O(1)处执行,从而将计算时间复杂性降低到迭代次数。此外,我们在实验上证明了可靠,有效地分解视觉感知表示的能力。
Disentanglement of constituent factors of a sensory signal is central to perception and cognition and hence is a critical task for future artificial intelligence systems. In this paper, we present a compute engine capable of efficiently factorizing holographic perceptual representations by exploiting the computation-in-superposition capability of brain-inspired hyperdimensional computing and the intrinsic stochasticity associated with analog in-memory computing based on nanoscale memristive devices. Such an iterative in-memory factorizer is shown to solve at least five orders of magnitude larger problems that cannot be solved otherwise, while also significantly lowering the computational time and space complexity. We present a large-scale experimental demonstration of the factorizer by employing two in-memory compute chips based on phase-change memristive devices. The dominant matrix-vector multiply operations are executed at O(1) thus reducing the computational time complexity to merely the number of iterations. Moreover, we experimentally demonstrate the ability to factorize visual perceptual representations reliably and efficiently.