论文标题

各向异性Triebel-lizorkin空间的分类

Classification of anisotropic Triebel-Lizorkin spaces

论文作者

Koppensteiner, Sarah, van Velthoven, Jordy Timo, Voigtlaender, Felix

论文摘要

本文提供了用于扩展矩阵$ a \ in \ mathrm {gl}(d,\ mathbb {r})$生成相同的各向异性均质triebel-lizorkin空间$ \ dot $ \ dot $ \ dot {\ mathbf {f}}^^p,p, \ Mathbb {r} $和$ p,q \ in(0,\ infty] $。显示出$ \ dot {\ mathbf {f}}^α__{p,q}(a)= \ dot { $ρ_a,ρ_b$与矩阵$ a,b $相关,除了情况外,$ \ dot {\ mathbf {f}}^0_ {p,2} = l^p $与$ p \ in(1,\ infty)$ p \ in(1,\ infty)$。 \ dot {\ mathbf {f}}}^{0} _ {p,2}(a)$,$ p \ in(0,1] $,in [mem。Am。Math。Soc。781,122 p。(2003)]。

This paper provides a classification theorem for expansive matrices $A \in \mathrm{GL}(d, \mathbb{R})$ generating the same anisotropic homogeneous Triebel-Lizorkin space $\dot{\mathbf{F}}^α_{p, q}(A)$ for $α\in \mathbb{R}$ and $p,q \in (0,\infty]$. It is shown that $\dot{\mathbf{F}}^α_{p, q}(A) = \dot{\mathbf{F}}^α_{p, q}(B)$ if and only if the homogeneous quasi-norms $ρ_A, ρ_B$ associated to the matrices $A, B$ are equivalent, except for the case $\dot{\mathbf{F}}^0_{p, 2} = L^p$ with $p \in (1,\infty)$. The obtained results complement and extend the classification of anisotropic Hardy spaces $H^p(A) = \dot{\mathbf{F}}^{0}_{p,2}(A)$, $p \in (0,1]$, in [Mem. Am. Math. Soc. 781, 122 p. (2003)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源