论文标题

在Schrödinger设置中加权的Morrey-campanato空间上的变异和振荡操作员

Variation and oscillation operators on weighted Morrey-Campanato spaces in the Schrödinger setting

论文作者

Almeida, Víctor, Betancor, Jorge, Fariña, Juan C., Rodríguez-Mesa, Lourdes

论文摘要

令$ \ MATHCAL {l} $为具有潜在$ V $的Schrödinger运营商,即$ \ Mathcal L =-Δ+V $,假定$ V $满足反向Hölder不平等。我们考虑加权的Morrey-campanato空间$ bmo _ {\ Mathcal l,w}^α(\ Mathbb r^d)$和$ blo_ {l,w}^α(\schrödinger设置中的Mathbb r^d)$。我们证明了变体运算符$v_σ(\ {t_t \} _ {t> 0})$,$σ> 2 $和振荡操作符$ o(\ {t_t \} _ {t> 0} $ t_j <t_ {j+1} $,$ j \ in \ mathbb z $,$ \ lim_ {j \ rightarrow+\ rightarrow+\ infty} t_j =+\ \ \ \ fly $和$ \ lim_ { l} $,$ t> 0 $,带有$ k \ in \ mathbb n $,是$ bmo _ {\ mathcal l,w}^α(\ mathbb r^d)$ to $ bmo _ {\ mathbb r^d)in $ _ {\ blo _ {\ mathcal l,W}^α(\ mathcal l,w}^α(\ mathbb r r^d)$。我们还为由$ \ {t^k \ partial_t^k e^{ - t \ mathcal l} \} _ {t> 0} $,$ k \ in \ mathbb n $建立了相同的属性。

Let $\mathcal{L}$ be the Schrödinger operator with potential $V$, that is, $\mathcal L=-Δ+V$, where it is assumed that $V$ satisfies a reverse Hölder inequality. We consider weighted Morrey-Campanato spaces $BMO_{\mathcal L,w}^α(\mathbb R^d)$ and $BLO_{L,w}^α(\mathbb R^d)$ in the Schrödinger setting. We prove that the variation operator $V_σ(\{T_t\}_{t>0})$, $σ>2$, and the oscillation operator $O(\{T_t\}_{t>0}, \{t_j\}_{j\in \mathbb Z})$, where $t_j<t_{j+1}$, $j\in \mathbb Z$, $\lim_{j\rightarrow +\infty}t_j=+\infty$ and $\lim_{j\rightarrow -\infty} t_j=0$, being $T_t=t^k\partial_t^k e^{-t\mathcal L}$, $t>0$, with $k\in \mathbb N$, are bounded operators from $BMO_{\mathcal L,w}^α(\mathbb R^d)$ into $BLO_{\mathcal L,w}^α(\mathbb R^d)$. We also establish the same property for the maximal operators defined by $\{t^k\partial_t^k e^{-t\mathcal L}\}_{t>0}$, $k\in \mathbb N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源