论文标题
迈向磁力驱动的超新星的肾小管模型
Towards Nebular Spectral Modeling of Magnetar-Powered Supernovae
论文作者
论文摘要
人们认为,许多能量的超新星(SNE)被高度磁化,快速旋转的中子星的旋转能源提供动力。相关发光的脉冲星风星云(PWN)的发射可以使Sn射出器进行光电定位,从而导致射出的源谱,并带有可能揭示PWN的签名。 SN 2012au被认为是这样的SN。我们研究了不同的弹出和PWN参数对SN nebular频谱的影响,并测试是否有任何光电离世模型与SN 2012AU一致。我们研究了如何将来自树脂相的约束链接到扩散阶段的建模和磁力的无线电发射的建模。我们提出了由内部PWN提供动力的Sn射流的延迟(1-6岁)频谱模拟的套件。在大的1区模型的大网格上,我们研究了SN物理状态和线排放的行为作为PWN光度($ l _ {\ rm PWN} $),注入SED温度($ t _ {\ rm pwn} $),ejecta smos,ejecta mass($ m _ {$ m _ {\ rm ej} $ ej} $(和cuper),或cuper(或cuper),或o. o o o o o o o。我们讨论了SN 2012au的观察到的行为的背景下,我们的发射是PWN驱动的SN的强大候选者。 Sn nebular频谱随$ t _ {\ rm pwn} $而变化,因为弹出量的离子化较小,因为$ t _ {\ rm pwn} $增加。高PWN功率下的低射流质量模型可为O I获得失控的电离,在极端情况下,也可以在参数空间的少量变化中导致其离子分数急剧下降。某些模型可以在单个时期合理地重现SN 2012AU的氧气线发光度,但是我们发现在整个时间演化中都没有适合的模型。这可能是由于简单的模型设置所致。使用我们从变型阶段的派生约束,我们预测磁力动力SN 2012AU具有初始旋转周期$ \ sim $ 15毫秒,并且应该是数十年来强的无线电源(F> 100 $ $ $ JY)。
Many energetic supernovae (SNe) are thought to be powered by the rotational-energy of a highly-magnetized, rapidly-rotating neutron star. The emission from the associated luminous pulsar wind nebula (PWN) can photoionize the SN ejecta, leading to a nebular spectrum of the ejecta with signatures possibly revealing the PWN. SN 2012au is hypothesized to be one such SN. We investigate the impact of different ejecta and PWN parameters on the SN nebular spectrum, and test if any photoionization models are consistent with SN 2012au. We study how constraints from the nebular phase can be linked into modelling of the diffusion phase and the radio emission of the magnetar. We present a suite of late-time (1-6y) spectral simulations of SN ejecta powered by an inner PWN. Over a large grid of 1-zone models, we study the behaviour of the SN physical state and line emission as PWN luminosity ($L_{\rm PWN}$), injection SED temperature ($T_{\rm PWN}$), ejecta mass ($M_{\rm ej}$), and composition (pure O or realistic) vary. We discuss the resulting emission in the context of the observed behaviour of SN 2012au, a strong candidate for a PWN-powered SN. The SN nebular spectrum varies as $T_{\rm PWN}$ varies, as the ejecta become less ionized as $T_{\rm PWN}$ increases. Low ejecta mass models at high PWN power obtain runaway ionization for O I and, in extreme cases, also O II, causing a sharp decrease in their ion fraction over a small change in the parameter space. Certain models can reproduce the oxygen lines luminosities of SN 2012au reasonably well at individual epochs, but we find no model that fits over the whole time evolution; this is likely due to the simple model setup. Using our derived constraints from the nebular phase, we predict that the magnetar powering SN 2012au had an initial rotation period $\sim$ 15 ms, and should be a strong radio source (F > 100 $μ$Jy) for decades.