论文标题
开放式KPZ方程的强大财产
The strong Feller property of the open KPZ equation
论文作者
论文摘要
我们证明,开放KPZ方程在有界空间间隔内生成的半群,其Neumann边界条件由实际参数U和V参数为参数,享有强的Feller属性。我们得出的结论是,对于U+V> 0,最小(U,V)> -1 Corwin和Knizel(Arxiv:2103.12253)中构建的固定度量是方程式的独特固定度量。可以预期,对于U和V的所有值,相同的结论也是如此。
We prove that the semigroup generated by the open KPZ equation on a bounded spatial interval with Neumann boundary conditions parametrized by real parameters u and v enjoys the strong Feller property. From this we conclude that for u+v>0, min(u,v)>-1 the stationary measure constructed in Corwin and Knizel (arXiv:2103.12253) is the unique stationary measure for the equation. It is expected that the same conclusion holds for all values of u and v.