论文标题
无金属二进制的形成:h $ _ {2} $ cooling和Cie冷却的影响
Formation of metal-free binaries: Impact of H$_{2}$ line cooling and CIE cooling
论文作者
论文摘要
在原始星形成期间,主要冷却通道由h $ _ {2} $和超级分子(例如H $ _ {2} $或H $ _ {2} $)提供,以足够高的密度。当后者以$ n _ {\ rm h} $ $ \ geq $ $ 10^{14} $ 〜cm $^{ - 3} $时,collision-collision-toused发射(CIE)提供有效的气体冷却时,我们研究了CIE冷却如何影响与此过程中的模拟进行比较的无金属二进制文件的形成。无论冷却机制如何,我们都会发现典型的原始质量质量在0.01至100 m $ _ {\ odot} $之间。但是,只有h $ _ {2} $线冷却的模型产生的低质量原恒星比高质量质体的径向速度表现出更强的变化。同样,在H $ _ {2} $冷却和CIE冷却的型号中,在中间质量范围内发现了径向速度的显着变化。碎片的初始数量$ n _ {\ rm max} $随着湍流强度的增加而减小。通过超级分子冷却使最大的原始物质(MMPB)有效地积聚质量。 MMPB的最大质量积聚率$ \ dot m _ {\ rm max} $在CIE冷却的存在下比纯H $ _ {2} $ line冷却的订单高。结果,具有半轴轴的紧凑型二进制文件可能会通过h $ _ {2} $ - $ - $ - $ h $ _ {2} $冷却通道形成3.57 au。我们的结果表明,除了MMPBS外,大多数人口III(POP。III)二进制物应具有偏心的二进制文件,即非圆形轨道。这提供了与先前研究中报道的怪异二进制文件的重要联系,这些研究在其演变过程中发现了丰富的时间积聚信号。
During primordial star formation, the main cooling channel is provided by H$_{2}$ and super-molecules, such as H$_{2}$ or H$_{2}$, at sufficiently high densities. When the latter form at $n_{\rm H}$ $\geq$ $10^{14}$~cm$^{-3}$, collision-induced emission (CIE) provides efficient gas cooling. We investigate how CIE cooling affects the formation of metal-free binaries comparing simulations with and without this process. Irrespective of the cooling mechanism, we find a typical protostellar mass range between 0.01 to 100 M$_{\odot}$. However, models with only H$_{2}$ line cooling produce a greater number of low-mass protostars which exhibit stronger variations in their radial velocities than the high-mass protostars. Similarly, in models with both H$_{2}$ cooling and CIE cooling, significant variations in the radial velocities are found for protostars in the intermediate mass range. The initial number of fragments $N_{\rm max}$ decreases with increasing strength of turbulence. Cooling via super-molecules lets the most massive protobinaries (MMPBs) efficiently accrete mass. The maximum mass accretion rate $\dot M_{\rm max}$ for the MMPBs is more than an order of magnitude higher in the presence of CIE cooling than for pure H$_{2}$ line cooling. As a result, compact binaries with a semi-major axis as small as 3.57 au may form through the H$_{2}$ $-$ H$_{2}$ cooling channel. Our results indicate that in addition to the MMPBs most population III (Pop. III) binaries should be in eccentric i.e. non-circular orbits. This provides an important connection to the eccentric binaries reported in previous studies, which were found to exhibit rich temporal accretion signals during their evolution.