论文标题
倒谐波振荡器的混乱和多重复杂性
Chaos and multifold complexity for an inverted harmonic oscillator
论文作者
论文摘要
我们检查了倒谐波振荡器的多重复杂性和Loschmidt Echo。我们为任何数量的前体提供了分析表达式,并在扰动中的领先顺序上实现了量子状态的多个向后和向前的时间演变。我们证明,复杂性由给定时间组合的最长置换术在交替的``Zig-Zag''级中所占据,这是通过全息摄影获得的完全相同的结果。我们猜想,多胎复杂性的一般结构应普遍为通用量子系统,在大量前体的极限下。
We examine the multifold complexity and Loschmidt echo for an inverted harmonic oscillator. We give analytic expressions for any number of precursors, implementing multiple backward and forward time evolutions of the quantum state, at the leading order in the perturbation. We prove that complexity is dominated by the longest permutation of the given time combination in an alternating ``zig-zag'' order, the exact same result obtained with holography. We conjecture that the general structure for multifold complexity should hold true universally for generic quantum systems, in the limit of a large number of precursors.