论文标题
壳流
On-Shell Flow
论文作者
论文摘要
在这项工作中,解决了为时空度量标准保留爱因斯坦场方程的几何流程方程的问题。在简要讨论了RICCI流的主要特征之后,构建了由动态度量和一组物质字段组成的系统的壳流程方程。然后,详细分析了两个物质内容仅是一个自我相互作用的标量字段的示例,将几何流程方程施加为动作诱导的方程。总之,提出了与Swampland距离猜想的明确联系。
In this work, the problem of constructing geometric flow equations that preserve Einstein field equations for the spacetime metric is addressed. After having briefly discussed the main features of Ricci flow, the on-shell flow equations for a system comprised of a dynamical metric and a set of matter fields are constructed. Then, two examples in which the matter content is just a single, self-interacting scalar field are analysed in detail, imposing the geometric flow equations to be the action-induced ones. In conclusion, an explicit connection to the Swampland Distance Conjecture is proposed.