论文标题
在hopf图的Leavitt路径代数
On Leavitt path algebras of Hopf graphs
论文作者
论文摘要
在本文中,我们提供了与对$(g,\ mathfrak {r})$相关的HOPF图的结构,由组$ g $以及RAMIFIENT DATAS $ \ MATHFRAK {r} $及其Leavitt Path代数组成。因此,我们表征了Gelfand-Kirillov维度,稳定等级,纯粹的无限简单性以及通过RAMIFIENT DATA $ \ MATHFRAK {R} $和$ G $的HOPF图的Leavitt Path代数的非零有限维表示。
In this paper, we provide the structure of Hopf graphs associated to pairs $(G, \mathfrak{r})$ consisting of groups $G$ together with ramification datas $\mathfrak{r}$ and their Leavitt path algebras. Consequently, we characterize the Gelfand-Kirillov dimension, the stable rank, the purely infinite simplicity and the existence of a nonzero finite dimensional representation of the Leavitt path algebra of a Hopf graph via properties of ramification data $\mathfrak{r}$ and $G$.