论文标题
热诱导的结构进化和分层金属葡萄球源中的纳米级界面动力学
Thermally Induced Structural Evolution and Nanoscale Interfacial Dynamics in Layered Metal Chalcogenides
论文作者
论文摘要
分层的辣椒剂在内,包括BI2TE3,SB2TE3,BI-SB-TE三元合金和异质结构被称为伟大的热电,拓扑绝缘子,最近被强调为贵金属以外的等离子构建块。在这里,我们进行了原位传播电子显微镜(原位TEM)和密度功能理论(DFT)计算,以研究依赖温度依赖的纳米级动力学,界面特性,并进一步识别天然缺陷和边缘构型在Al2te3-SB2TE3-SB2TE3-SB2TE3 IN-PLANE IN-PLANE OLD-PLANESTRECTURE和SBB2-sb2-- sB2-2----报告了热诱导多边形纳米孔的结构动力学,包括边缘演化,形成,扩张和聚结。纳米孔似乎是通过从中心,异质结构中的杂齿源性(TE)的优先解离(TE)来引发的,仅来自合金对应物的外边缘。这导致了异质结构的热稳定性降低和显着不同的升华途径。此外,观察到三角形和准六角形构型是异质结构中的主要纳米孔构型。此外,我们的DFT计算提供了对天然缺陷和边缘形成能的作用的机械理解,揭示了抗菌缺陷将TEBI在TE-TE-CHICH条件下成为主要的本地缺陷,并在缺陷辅助升华的情况下发挥关键作用。这些发现极大地影响了我们对控制纳米级升华动力学的理解,并最终可以帮助我们设计可调的低维辣奶油蛋白酶。
Layered chalcogenides including Bi2Te3, Sb2Te3, Bi-Sb-Te ternary alloys and heterostructures are known as great thermoelectric, topological insulators and recently highlighted as plasmonic building blocks beyond noble metals. Here, we conduct a joint in situ transmission electron microscopy (in situ TEM) and density functional theory (DFT) calculations to investigate the temperature dependent nanoscale dynamics, interfacial properties and further identifying the role of native defects and edge configurations in anisotropic sublimations of Bi2Te3-Sb2Te3 in-plane heterostructure and Sb2-xBixTe3 alloy. Structural dynamics including edge evolution, formation, expansion, and coalescence of thermally induced polygonal nanopores are reported. The nanopores appear to be initiated by preferential dissociation of chalcogenide species (Te) from the center, heterointerface and edges in the heterostructure and only from the outer edges in the alloy counterpart. This results in a reduced thermal stability and significantly different sublimation pathways of the heterostructure. Furthermore, triangular and quasi hexagonal configurations are observed to be the dominant nanopores configurations in the heterostructure. Additionally, our DFT calculations provide a mechanistic understanding on the role of native defects and edge formation energies, revealing the antisite defects TeBi to be the dominant native defect in a Te-rich condition and playing a key role on the defects assisted sublimation. These findings significantly impact our understanding of controlling the nanoscale sublimation dynamics and can ultimately assist us in designing tunable low-dimensional chalcogenides.