论文标题

平面图的$ 4 $ - 可智能,$ 4 $ -Cycles通过组合无效的Nullstellensatz

$4$-choosability of planar graphs with $4$-cycles far apart via the Combinatorial Nullstellensatz

论文作者

Yang, Fan, Wang, Yue, Wu, Jian-liang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

By a well-known theorem of Thomassen and a planar graph depicted by Voigt, we know that every planar graph is $5$-choosable, and the bound is tight. In 1999, Lam, Xu and Liu reduced $5$ to $4$ on $C_4$-free planar graphs. In the paper, by applying the famous Combinatorial Nullstellensatz, we design an effective algorithm to deal with list coloring problems. At the same time, we prove that a planar graph $G$ is $4$-choosable if any two $4$-cycles having distance at least $5$ in $G$, which extends the result of Lam et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源