论文标题

来自赫尔辛基,芬兰南部,大都会地区的M1.8地震的地震声音滋扰模式的数值模拟

Numerical simulations of seismo-acoustic nuisance patterns from an induced M1.8 earthquake in the Helsinki, southern Finland, metropolitan area

论文作者

Krenz, Lukas, Wolf, Sebastian, Hillers, Gregor, Gabriel, Alice-Agnes, Bader, Michael

论文摘要

地震波可以与大气并产生声波。断层机制对地震声音模式的影响为地震源表征提供了机会。从地震中散发出来的声音可能会被视为令人不安的声音,这可能会对地球工程应用的社会接受产生负面影响。由赫尔辛基(Helsinki)埃斯波(Espoo)区的Otaniemi区下方在2018年长达一周对6公里深的地热系统刺激刺激的触觉和听到的干扰的报道,我们进行了完全耦合的3D数值模拟,对固体和大气层中的波传播的3D数值模拟。我们评估地面摇动的敏感性和可听见的噪声分布对诱发地震的源几何形状的敏感性。利用最近的计算进步和开源软件Seissol,我们将地震声频率建模为25 Hz,从而达到了可听见的声频范围的下限。我们介绍了摇动和听觉的合成分布,并讨论了更好地理解大都市地区地震扰动的含义。在五个3D耦合的弹性声音场景中,我们分析了地震生成的地震和声波的地面速度和压力水平。我们表明,S波会产生最强的声音干扰,声压水平高达0.04 pa。我们使用统计分析将噪声分布与常用的经验关系进行比较。我们发现,我们的3D合成幅度通常小于经验预测,并且源特异性辐射模式和地形的相互作用会导致显着的非线性效应。我们的研究强调了与局部尺度上的小型地震相关的空间可变效应的复杂性和信息含量。

Seismic waves can couple with the atmosphere and generate sound waves. The influence of faulting mechanisms on earthquake sound patterns provides opportunities for earthquake source characterization. Sound radiated from earthquakes can be perceived as disturbing which can negatively impact the social acceptance of geoengineering applications. Motivated by reports of felt and heard disturbances associated with the week-long stimulation of a 6 km-deep geothermal system in 2018 below the Otaniemi district of Espoo, Helsinki, we conduct fully coupled 3D numerical simulations of wave propagation in the solid Earth and the atmosphere. We assess the sensitivity of the ground shaking and audible noise distributions to the source geometry of the induced earthquakes. Utilizing recent computational advances and the open-source software SeisSol, we model seismo-acoustic frequencies up to 25 Hz, thereby reaching the lower limit of the audible sound frequency range. We present synthetic distributions of shaking and audible and discuss implications for better understanding seismic nuisances in metropolitan regions. In five 3D coupled elastic-acoustic scenario, we analyze the ground velocity and pressure levels of earthquake-generated seismic and acoustic waves. We show that S waves generate the strongest sound disturbance with sound pressure levels of up to 0.04 Pa. We use statistical analysis to compare our noise distributions with commonly used empirical relationships. We find that our 3D synthetic amplitudes are generally smaller than the empirical predictions and that the interaction of the source-specific radiation pattern and topography can lead to significant non-linear effects. Our study highlights the complexity and information content of spatially variable audible effects associated with small induced earthquakes on local scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源