论文标题
编织的Hopf代数和量规转换II:$*$ - 结构和示例
Braided Hopf algebras and gauge transformations II: $*$-structures and examples
论文作者
论文摘要
我们认为在三角形霍夫·代数下是均等的非交通性主要捆绑包。我们提出了无限尺寸编织的谎言和HOPF代数的明确例子,该代数的无限规范变换在非交通球上。这些代数的编织是由对称性霍夫夫代数的三角形结构实现的。我们提供了对兼容$*$ - 结构的系统分析,其中包含了准二元案例。
We consider noncommutative principal bundles which are equivariant under a triangular Hopf algebra. We present explicit examples of infinite dimensional braided Lie and Hopf algebras of infinitesimal gauge transformations of bundles on noncommutative spheres. The braiding of these algebras is implemented by the triangular structure of the symmetry Hopf algebra. We present a systematic analysis of compatible $*$-structures, encompassing the quasitriangular case.