论文标题
三角三角盘包装的密度
Density of triangulated ternary disc packings
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider ternary disc packings of the plane, i.e. the packings using discs of three different radii. Packings in which each ''hole'' is bounded by three pairwise tangent discs are called triangulated. There are 164 pairs $(r,s)$, $1{>}r{>}s$, allowing triangulated packings by discs of radii 1, $r$ and $s$. In this paper, we enhance existing methods of dealing with maximal-density packings in order to find ternary triangulated packings which maximize the density among all the packings with the same disc radii. We showed for 16 pairs that the density is maximized by a triangulated ternary packing; for 15 other pairs, we proved the density to be maximized by a triangulated packing using only two sizes of discs; for 40 pairs, we found non-triangulated packings strictly denser than any triangulated one; finally, we classified the remaining cases where our methods are not applicable.