论文标题

与粉丝有关的拉姆齐号码的一些确切值

Some exact values on Ramsey numbers related to fans

论文作者

Zhao, Qinghong, Wei, Bing

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For two given graphs $F$ and $H$, the Ramsey number $R(F,H)$ is the smallest integer $N$ such that any red-blue edge-coloring of the complete graph $K_N$ contains a red $F$ or a blue $H$. When $F=H$, we simply write $R_2(H)$. For an positive integer $n$, let $K_{1,n}$ be a star with $n+1$ vertices, $F_n$ be a fan with $2n+1$ vertices consisting of $n$ triangles sharing one common vertex, and $nK_3$ be a graph with $3n$ vertices obtained from the disjoint union of $n$ triangles. In 1975, Burr, Erdős and Spencer \cite{B} proved that $R_2(nK_3)=5n$ for $n\ge2$. However, determining the exact value of $R_2(F_n)$ is notoriously difficult. So far, only $R_2(F_2)=9$ has been proved. Notice that both $F_n$ and $nK_3$ contain $n$ triangles and $|V(F_n)|<|V(nK_3)|$ for all $n\ge 2$. Chen, Yu and Zhao (2021) speculated that $R_2(F_n)\le R_2(nK_3)=5n$ for $n$ sufficiently large. In this paper, we first prove that $R(K_{1,n},F_n)=3n-\varepsilon$ for $n\ge1$, where $\varepsilon=0$ if $n$ is odd and $\varepsilon=1$ if $n$ is even. Applying the exact values of $R(K_{1,n},F_n)$, we will confirm $R_2(F_n)\le 5n$ for $n=3$ by showing that $R_2(F_3)=14$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源