论文标题
Erdös-RényiPoissonized
Erdös-Rényi Poissonized
论文作者
论文摘要
我们介绍了Erdös-rényi随机图的一种变体,其中顶点是随机的,并遵循泊松定律。该模型的一个非常简单的马尔可夫属性需要Lukasiewicz探索是由\ textit {ipperdent} Poisson增量制成的。使用香草泊松计数过程,这使我们能够提供非常短的经典结果证明,例如巨型组件的相变或标准Erdös-rényi模型的连接性。
We introduce a variant of the Erdös--Rényi random graph where the number of vertices is random and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz exploration is made of \textit{independent} Poisson increments. Using a vanilla Poisson counting process, this enables us to give very short proofs of classical results such as the phase transition for the giant component or the connectedness for the standard Erdös--Rényi model.