论文标题
电荷对$ f(g,t)$重力的分离各向异性球的影响
Influence of Charge on Decoupled Anisotropic Spheres in $f(G,T)$ Gravity
论文作者
论文摘要
在本文中,我们开发了两种各向异性解决方案,用于在$ f(g,t)$理论中通过重力去耦方法在存在电磁场的情况下,在存在电磁场的情况下,其中$ g $和$ t $分别表示高斯 - 孔内的术语和能量量量的跟踪。各向同性种子扇形的额外来源负责在时空中产生各向异性。通过在径向分量中使用最小的几何变形,将场方程系统分解为两个阵列。第一组描绘了各向同性制度,而第二组表示各向异性系统。 Krori-Barua时空的度量系数用于提取第一组的溶液,而额外源的径向和时间成分的两个约束产生相应的两个溶液。最后,我们研究了电荷和解耦参数对获得溶液的物理生存能力和稳定性的影响。我们得出的结论是,该修改理论中所得的解决方案表明更可行和稳定的结构。
In this paper, we develop two anisotropic solutions for static self-gravitating spherical structure in the presence of electromagnetic field through gravitational decoupling approach in $f(G,T)$ theory, where $G$ and $T$ denote the Gauss-Bonnet term and trace of the energy-momentum tensor, respectively. The extra source with isotropic seed sector is responsible for generating anisotropy in the spacetime. The system of field equations is decoupled into two arrays by using minimal geometric deformation in the radial component. The first set portrays the isotropic regime whereas the second set represents the anisotropic system. The metric coefficients of the Krori-Barua spacetime are employed to extract solution of the first set while two constraints on the radial and temporal components of the extra source yield the corresponding two solutions. Finally, we investigate the influence of charge and decoupling parameter on the physical viability and stability of the obtained solutions. We conclude that the resulting solutions in this modified theory indicate more feasible and stable structures.