论文标题
具有动力学轨道的全息和磁性水力学
Holography and magnetohydrodynamics with dynamical gauge fields
论文作者
论文摘要
在全息图的框架内,具有差异边界条件的爱因斯坦 - 马克斯韦尔作用对应于存在外部量规场的双共形场理论。然而,在许多实际应用中,例如磁性水力学,等离子体物理学,超导体等。动态量规场和库仑相互作用是基本的。在这项工作中,我们考虑在有限磁场和(自由)电荷密度下的自下而上的全息模型,在使用混合边界条件引入的动态边界规场的存在下。我们在数值上研究了最低的准正常模式的频谱,并成功地将获得的结果与磁流失动力学理论比较了$ 2+1 $尺寸。令人惊讶的是,就电磁耦合而言,即使在较大的磁场极限中,我们也能找到完美的一致性。我们的结果证明,磁性水力动力学的全息描述不一定需要更高的体积场,而可以使用标准仪场的混合边界条件来始终如一地得出。
Within the framework of holography, the Einstein-Maxwell action with Dirichlet boundary conditions corresponds to a dual conformal field theory in presence of an external gauge field. Nevertheless, in many real-world applications, e.g., magnetohydrodynamics, plasma physics, superconductors, etc. dynamical gauge fields and Coulomb interactions are fundamental. In this work, we consider bottom-up holographic models at finite magnetic field and (free) charge density in presence of dynamical boundary gauge fields which are introduced using mixed boundary conditions. We numerically study the spectrum of the lowest quasi-normal modes and successfully compare the obtained results to magnetohydrodynamics theory in $2+1$ dimensions. Surprisingly, as far as the electromagnetic coupling is small enough, we find perfect agreement even in the large magnetic field limit. Our results prove that a holographic description of magnetohydrodynamics does not necessarily need higher-form bulk fields but can be consistently derived using mixed boundary conditions for standard gauge fields.