论文标题

超导/铁磁性纳米结构中的超晶元磁连接和纠缠

Ultrastrong magnon-photon coupling and entanglement in superconductor/ferromagnet nanostructures

论文作者

Silaev, Mikhail

论文摘要

Ultrastrong Light-Mater-Mater耦合为产生挤压量子状态和纠缠而开辟了令人兴奋的可能性。在这里,我们提出了一种在与铁磁层中层的超导杂交纳米结构中实现这种状态的方法。发现超导板之间电磁场的强限制会导致存在具有超晶元镁偶联,超高的合作社和非常大的群体速度的磁杆模式。这些模式可以对最近的实验进行数字准确的解释,并具有吸引人的量子特性。木核量子量子真空吸尘器由挤压镁和光子状态组成,其挤压程度由外部磁场在宽限上控制。虚拟光子和镁的基态群体被证明非常大,可用于产生相关的镁和光子对。木氧化棒极 - 两极的激发态包含镁和光子之间的两部分纠缠。该属性可用于在不同类型的量子系统之间传输纠缠。

Ultrastrong light-matter coupling opens exciting possibilities to generate squeezed quantum states and entanglement. Here we propose a way to achieve this regime in superconducting hybrid nanostructures with ferromagnetic interlayers. Strong confinement of electromagnetic field between superconducting plates is found to result in the existence of magnon-polariton modes with ultrastrong magnon-photon coupling, ultra-high cooperativity and very large group velocities. These modes provide a numerically accurate explanation of recent experiments and have intriguing quantum properties. The magnon-polariton quantum vacuum consists of the squeezed magnon and photon states with the degree of squeezing controlled in wide limits by the external magnetic field. The ground state population of virtual photons and magnons is shown to be very large which can be used for generating correlated magnon and photon pairs. Excited states of magnon-polaritons contain bipartite entanglement between magnons and photons. This property can be used for transferring entanglement between different types of quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源