论文标题

与广义康威对话 - 戈登类型的一致性

Converses to generalized Conway--Gordon type congruences

论文作者

Nikkuni, Ryo

论文摘要

众所周知,对于$ n \ ge 7 $顶点上的每个空间完整图,在汉密尔顿结上的第二个系数的总和是$ r_ {n} $ modulo $(n-5)! $ n \ neq 8k,8k+7 $。尤其是$ n = 7 $的情况以conway闻名 - 戈登$ k_ {7} $定理。相反,在本文中,我们证明了每个整数$(N-5)! q + r_ {n} $被实现为在$ n $顶点上的一些空间完整图中,在汉密尔顿结上的第二个系数的汇总。

It is known that for every spatial complete graph on $n\ge 7$ vertices, the summation of the second coefficients of the Conway polynomials over the Hamiltonian knots is congruent to $r_{n}$ modulo $(n-5)!$, where $r_{n} = (n-5)!/2$ if $n=8k,8k+7$, and $0$ if $n\neq 8k,8k+7$. In particular the case of $n=7$ is famous as the Conway--Gordon $K_{7}$ theorem. In this paper, conversely, we show that every integer $(n-5)! q + r_{n}$ is realized as the summation of the second coefficients of the Conway polynomials over the Hamiltonian knots in some spatial complete graph on $n$ vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源