论文标题
银河系的化学演化
Chemical Evolution of Fluorine in the Milky Way
论文作者
论文摘要
氟有许多不同的潜在地点和生产渠道,使氟氟生产的主要地点缩小尤其具有挑战性。在这项工作中,我们通过将化学演化模型与对银河系中的荧光量的观察结果进行比较,涵盖金属性范围-2 $ <$ <$ <$ [fe/h] $ <$ <$ 0.4,在-3.4 $ <$ <$ <$ <$ <$ <$ <$ <$ <$ 2.3中,我们研究了哪些来源是银河氟的主要因素。在我们的模型中,我们使用各种恒星产量集,以探索改变AGB和大量恒星产量对氟化学演化的影响。特别是,我们研究了大型恒星中初始旋转速度的不同处方以及旋转速度的金属依赖性混合物。我们发现,在低金属性下观察到的[f/o]和[f/fe]丰度比,[f/ba]在[f/ba] $ \ gtrsim $ -1的增加趋势只能通过化学进化模型来复制,假设所有金属级的金属级别,从最初的旋转velociations s s $ shipationals of All of Metallicities,是$^$^$^$^$^$^$^$^$^$^y。旋转速度的混合可能比$ v _ {\ text {rot}} $ = 300 $ = 300 $ \ text {km s}^{ - 1} $的唯一使用大量恒星可以提供更大的解决方案,这些恒星可预测,预测,这些恒星可以预测,这些预测会超过荧光素和平均的s-process元素在[fe/hh] $ \ g gtrsim $ \ gtrsim。预计AGB恒星的贡献始于[Fe/H] $ \ $ -1,并且在高金属性下变得越来越重要,严格与氮丰度的演变相结合。最后,通过使用现代产量集,我们研究了狼射线风的氟丰富度,将它们排除在银河氟的主要因素。
Fluorine has many different potential sites and channels of production, making narrowing down a dominant site of fluorine production particularly challenging. In this work, we investigate which sources are the dominant contributors to the galactic fluorine by comparing chemical evolution models to observations of fluorine abundances in Milky Way stars covering a metallicity range -2$<$[Fe/H]$<$0.4 and upper limits in the range -3.4$<$[Fe/H]$<$-2.3. In our models, we use a variety of stellar yield sets in order to explore the impact of varying both AGB and massive star yields on the chemical evolution of fluorine. In particular, we investigate different prescriptions for initial rotational velocity in massive stars as well as a metallicity dependent mix of rotational velocities. We find that the observed [F/O] and [F/Fe] abundance ratios at low metallicity and the increasing trend of [F/Ba] at [Fe/H]$\gtrsim$-1 can only be reproduced by chemical evolution models assuming, at all metallicities, a contribution from rapidly rotating massive stars with initial rotational velocities as high as 300km s$^{-1}$. A mix of rotational velocities may provide a more physical solution than the sole use of massive stars with $v_{\text{rot}}$=300$\text{km s}^{-1}$, which are predicted to overestimate the fluorine and average s-process elemental abundances at [Fe/H]$\gtrsim$-1. The contribution from AGB stars is predicted to start at [Fe/H]$\approx$-1 and becomes increasingly important at high metallicity, being strictly coupled to the evolution of the nitrogen abundance. Finally, by using modern yield sets, we investigate the fluorine abundances of Wolf-Rayet winds, ruling them out as dominant contributors to the galactic fluorine.