论文标题

双曲表示学习的数值稳定性

The Numerical Stability of Hyperbolic Representation Learning

论文作者

Mishne, Gal, Wan, Zhengchao, Wang, Yusu, Yang, Sheng

论文摘要

鉴于球的体积的指数增长双曲线空间的半径能够嵌入任意变形的树木,因此因代表分层数据集而受到广泛关注。但是,这种指数增长的特性以数值不稳定的价格产生,因此训练双曲线学习模型有时会导致灾难性的NAN问题,在浮点算术中遇到不可估量的值。在这项工作中,我们仔细分析了两种流行模型的双曲线空间的局限性,即庞加莱球和洛伦兹模型。我们首先表明,在64位算术系统下,庞加莱球具有比洛伦兹模型相对较大的容量。然后,从理论上讲,我们从优化的角度验证了洛伦兹模型比庞加莱球的优越性。考虑到这两个模型的数值局限性,我们确定了双曲线空间的一个欧几里得参数化,可以减轻这些局限性。我们进一步将这种欧几里得参数化扩展到双曲线超平面,并具有改善双曲线SVM性能的能力。

Given the exponential growth of the volume of the ball w.r.t. its radius, the hyperbolic space is capable of embedding trees with arbitrarily small distortion and hence has received wide attention for representing hierarchical datasets. However, this exponential growth property comes at a price of numerical instability such that training hyperbolic learning models will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic. In this work, we carefully analyze the limitation of two popular models for the hyperbolic space, namely, the Poincaré ball and the Lorentz model. We first show that, under the 64 bit arithmetic system, the Poincaré ball has a relatively larger capacity than the Lorentz model for correctly representing points. Then, we theoretically validate the superiority of the Lorentz model over the Poincaré ball from the perspective of optimization. Given the numerical limitations of both models, we identify one Euclidean parametrization of the hyperbolic space which can alleviate these limitations. We further extend this Euclidean parametrization to hyperbolic hyperplanes and exhibits its ability in improving the performance of hyperbolic SVM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源