论文标题
Simple-RC:具有非sharp null和弱信号的组网络推断
SIMPLE-RC: Group Network Inference with Non-Sharp Nulls and Weak Signals
论文作者
论文摘要
与不确定性量化有关的大规模网络推断在自然,社会和医学科学中具有重要的应用。 FAN,FAN,HAN和LV(2022)的最新工作引入了大型网络中成员资料概况(简单)的统计统计框架,以测试一对给定节点具有相同成员资格的尖锐无效假设。在实际应用中,通常有一些正在调查的节点可能会在相对较弱的信号存在下具有相似的会员资格,而不是简单的设置。为了应对这些实际挑战,在本文中,我们提出了一种简单的方法,该方法具有随机耦合(Simple-RC),用于测试一组给定节点在较弱的信号下具有相似(不一定是相同的)成员资格的非sharp null假设。利用随机耦合的概念,我们将测试构建为该组中次采样节点对的简单测试的最大测试。这种技术大大降低了单个简单测试之间的相关性,同时在很大程度上保持了功率,从而对简单RC测试的渐近分布进行了精致的分析。我们的方法和理论涵盖了有或没有淋巴结异质性的情况。这些新的理论发展是通过$ \ ell_ \ infty $ -norm下的二阶特征向量扩展的二阶扩展来授权的,这是基于我们的工作,用于较弱的尖峰的随机矩阵。我们的理论结果以及新建议的方法的实际优势是通过几个模拟和实际数据示例来证明的。
Large-scale network inference with uncertainty quantification has important applications in natural, social, and medical sciences. The recent work of Fan, Fan, Han and Lv (2022) introduced a general framework of statistical inference on membership profiles in large networks (SIMPLE) for testing the sharp null hypothesis that a pair of given nodes share the same membership profiles. In real applications, there are often groups of nodes under investigation that may share similar membership profiles at the presence of relatively weaker signals than the setting considered in SIMPLE. To address these practical challenges, in this paper we propose a SIMPLE method with random coupling (SIMPLE-RC) for testing the non-sharp null hypothesis that a group of given nodes share similar (not necessarily identical) membership profiles under weaker signals. Utilizing the idea of random coupling, we construct our test as the maximum of the SIMPLE tests for subsampled node pairs from the group. Such technique reduces significantly the correlation among individual SIMPLE tests while largely maintaining the power, enabling delicate analysis on the asymptotic distributions of the SIMPLE-RC test. Our method and theory cover both the cases with and without node degree heterogeneity. These new theoretical developments are empowered by a second-order expansion of spiked eigenvectors under the $\ell_\infty$-norm, built upon our work for random matrices with weak spikes. Our theoretical results and the practical advantages of the newly suggested method are demonstrated through several simulation and real data examples.