论文标题

$ \ mathbb {r}^3 $的行限制投影的杰出集估算值

An exceptional set estimate for restricted projections to lines in $\mathbb{R}^3$

论文作者

Gan, Shengwen, Guth, Larry, Maldague, Dominique

论文摘要

令$γ:[0,1] \ rightArrow \ Mathbb {s}^{2} $是$ \ Mathbb {r}^3 $中的非分级曲线,也就是说,$ \ det \ det \ big(γ(θ),γ'(θ),γ'(θ),γ'(γ)'(γ)\ big)对于[0,1] $中的每个$θ\,令$l_θ= \ {tγ(θ):t \ in \ mathbb {r} \} $和$ρ_θ:\ Mathbb {r}^3 \ rightArrowl_θ$是正贡的投影。 我们证明了一个非凡的集合估计。对于任何Borel设置$ A \ subset \ MathBb {r}^3 $和$ 0 \ le s \ le 1 $,定义$ e_s(a):= \ {θ\ in [0,1]:\ text {dim} {dim}(ρ_θ(a))<s \} $。我们有$ \ text {dim}(e_s(a))\ le 1+ \ frac {s- \ text {dim}(a)} {2} $。

Let $γ:[0,1]\rightarrow \mathbb{S}^{2}$ be a non-degenerate curve in $\mathbb{R}^3$, that is to say, $\det\big(γ(θ),γ'(θ),γ''(θ)\big)\neq 0$. For each $θ\in[0,1]$, let $l_θ=\{tγ(θ):t\in\mathbb{R}\}$ and $ρ_θ:\mathbb{R}^3\rightarrow l_θ$ be the orthogonal projections. We prove an exceptional set estimate. For any Borel set $A\subset\mathbb{R}^3$ and $0\le s\le 1$, define $E_s(A):=\{θ\in[0,1]: \text{dim}(ρ_θ(A))<s\}$. We have $\text{dim}(E_s(A))\le 1+\frac{s-\text{dim}(A)}{2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源