论文标题

最小链接围栏

Minimum Link Fencing

论文作者

Bhore, Sujoy, Klute, Fabian, Löffler, Maarten, Nöllenburg, Martin, Terziadis, Soeren, Villedieu, Anaïs

论文摘要

我们研究了几何多冲突问题的一种变体,在该变体中,我们将在平面中为有色和成对的内部连接多边形的$ \ Mathcal {p} $。目的是计算一组简单的闭合多边形边界(栅栏),该边界(栅栏)以这样的方式将多边形分开,以使任何两个由相同栅栏包围的多边形具有相同的颜色,并且所有围栏的链接总数都被最小化。我们将其称为最小链接围栏(MLF)问题,并考虑有限的最小链接围栏(BMLF)的自然情况,其中$ \ Mathcal {p} $包含一个多边形$ q $,该$ q $在所有方向上都无界,并且可以看作是外部多边形。我们表明,BMLF通常是NP-HARD,并且当每个围栏最多包含两个多边形时,它是XP时溶解的,每个栅栏的段数是参数。最后,我们提出了$ o(n \ log n)$ - 时间算法,以表明$ \ mathcal {p} \ setMinus \ {q \} $的凸壳不会相交$ q $。

We study a variant of the geometric multicut problem, where we are given a set $\mathcal{P}$ of colored and pairwise interior-disjoint polygons in the plane. The objective is to compute a set of simple closed polygon boundaries (fences) that separate the polygons in such a way that any two polygons that are enclosed by the same fence have the same color, and the total number of links of all fences is minimized. We call this the minimum link fencing (MLF) problem and consider the natural case of bounded minimum link fencing (BMLF), where $\mathcal{P}$ contains a polygon $Q$ that is unbounded in all directions and can be seen as an outer polygon. We show that BMLF is NP-hard in general and that it is XP-time solvable when each fence contains at most two polygons and the number of segments per fence is the parameter. Finally, we present an $O(n \log n)$-time algorithm for the case that the convex hull of $\mathcal{P} \setminus \{Q\}$ does not intersect $Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源