论文标题

拓扑量子系统基于季化的机器学习

Quaternion-based machine learning on topological quantum systems

论文作者

Lin, Min-Ruei, Li, Wan-Ju, Huang, Shin-Ming

论文摘要

通过机器学习技术对拓扑阶段分类进行了深入研究,其中提出了不同形式的培训数据,以最大程度地利用从感兴趣系统中提取的信息。由于量子物理学的复杂性,在设计机器中应考虑高级数学体系结构。在这项工作中,我们将四个代数纳入数据分析中,要么在受监督和无监督的学习框架中对二维Chern绝缘子进行分类。对于无监督的学习方面,我们将主要成分分析(PCA)应用于四元素转化的特征状态,以区分拓扑阶段。对于监督学习方面,我们通过在传统的卷积神经网络上添加一个四元基因卷积层来构建机器。该机器将经Quaternion转换的配置作为输入,并成功地对所有不同的拓扑阶段进行了分类,即使对于那些在训练过程中与机器所看到的状态不同的州也是如此。在拓扑相分类的任务中,我们的工作证明了四元组代数对从目标数据中提取至关重要的特征的力量和基于季节的神经网络的优势。

Topological phase classifications have been intensively studied via machine-learning techniques where different forms of the training data are proposed in order to maximize the information extracted from the systems of interests. Due to the complexity in quantum physics, advanced mathematical architecture should be considered in designing machines. In this work, we incorporate quaternion algebras into data analysis either in the frame of supervised and unsupervised learning to classify two-dimensional Chern insulators. For the unsupervised-learning aspect, we apply the principal component analysis (PCA) on the quaternion-transformed eigenstates to distinguish topological phases. For the supervised-learning aspect, we construct our machine by adding one quaternion convolutional layer on top of a conventional convolutional neural network. The machine takes quaternion-transformed configurations as inputs and successfully classify all distinct topological phases, even for those states that have different distributuions from those states seen by the machine during the training process. Our work demonstrates the power of quaternion algebras on extracting crucial features from the targeted data and the advantages of quaternion-based neural networks than conventional ones in the tasks of topological phase classifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源