论文标题

关于最大外平图的一般位置数量

On the general position numbers of maximal outerplanar graphs

论文作者

Tian, Jing, Xu, Kexiang, Chao, Daikun

论文摘要

图$ g $的子集$ r \ subseteq v(g)$是一般位置集,如果任何三个$ r_0 $ r_0 $ r $ $ r $是$ g $的非geodesic,也就是说,在$ g $中的其他两个$ r_0 $ r_0 $ r_0 $ r_0的$ r_0的顶点$ r_0 $都不存在。令$ \ mathcal {r} $为图$ g $的一组通用位置集。图$ g $的一般位置编号,用$ gp(g)$表示为$ gp(g)= \ max \ {| r |:r \ in \ Mathcal {r} \} $。在本文中,我们为任何最大外平面图确定GP数字上的边界,并表征相应的极端图。

A subset $R\subseteq V(G)$ of a graph $G$ is a general position set if any triple set $R_0$ of $R$ is non-geodesic in $G$, that is, no vertex of $R_0$ lies on any geodesic between the other two vertices of $R_0$ in $G$. Let $\mathcal{R}$ be the set of general position sets of a graph $G$. The general position number of a graph $G$, denoted by $gp(G)$, is defined as $gp(G)=\max\{|R|:R\in\mathcal{R}\}$. In this paper, we determine the bounds on the gp-numbers for any maximal outerplane graph and characterize the corresponding extremal graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源