论文标题
Ni $ _2 $ MNIN/INAS和TI $ _2 $ MNIN/INSB接口的电子结构的第一原理研究
First Principles Study of the Electronic Structure of the Ni$_2$MnIn/InAs and Ti$_2$MnIn/InSb interfaces
论文作者
论文摘要
我们介绍了一项关于Heusler化合物之间外延接口的电子和磁性特性的第一原理研究,分别是$ _2 $ MNIN和Ni $ _2 $ MNIN和IIII-V半导体,INSB和INAS。我们将密度功能理论(DFT)与由贝叶斯优化确定的机器学习的哈伯德$ u $校正。我们评估了这些界面,用于基于Majorana的量子计算和旋转基质中的前瞻性应用。在两个接口中,赫斯勒的状态都渗透到半导体的间隙中,在几个原子层内腐烂。界面上的磁相互作用在空间和能量中是局部局部的。在最接近界面的两个原子层中诱导了小于0.1 $μ_b$的磁矩。半导体的费米水平周围的诱导的自旋极化也在几个原子层内衰减。在半导体的费米水平周围诱导的自旋极化的决定性因子是赫斯勒(Heusler)围绕费米水平的自旋极化,而不是整体磁矩。结果,与铁电磁金属Ni $ _2 $ MNIN相比,铁磁性窄间隙半导体Ti $ _2 $ _2 $ MNIN在INSB中诱导了更重要的自旋极化。这是由过渡金属$ d $状态在费米级别中的过渡金属$ d $状态的位置来解释的。根据我们的结果,这些接口不太可能对Majoraana设备有用,但可能对Spintronics有用。
We present a first-principles study of the electronic and magnetic properties of epitaxial interfaces between the Heusler compounds Ti$_2$MnIn and Ni$_2$MnIn and the III-V semiconductors, InSb and InAs, respectively. We use density functional theory (DFT) with a machine-learned Hubbard $U$ correction determined by Bayesian optimization. We evaluate these interfaces for prospective applications in Majorana-based quantum computing and spintronics. In both interfaces, states from the Heusler penetrate into the gap of the semiconductor, decaying within a few atomic layers. The magnetic interactions at the interface are weak and local in space and energy. Magnetic moments of less than 0.1 $μ_B$ are induced in the two atomic layers closest to the interface. The induced spin polarization around the Fermi level of the semiconductor also decays within a few atomic layers. The decisive factor for the induced spin polarization around the Fermi level of the semiconductor is the spin polarization around the Fermi level in the Heusler, rather than the overall magnetic moment. As a result, the ferrimagnetic narrow-gap semiconductor Ti$_2$MnIn induces a more significant spin polarization in the InSb than the ferromagnetic metal Ni$_2$MnIn induces in the InAs. This is explained by the position of the transition metal $d$ states in the Heusler with respect to the Fermi level. Based on our results, these interfaces are unlikely to be useful for Majorana devices but could be of interest for spintronics.