论文标题
没有铂杂质的虹膜元素的单晶生长
Single crystal growth of iridates without platinum impurities
论文作者
论文摘要
在过去的十年中,源头引起了极大的兴趣,因为它们的新型磁性在强的旋转轨道耦合和可能的非常规超导性的极限上引起了人们的兴趣。使用铂坩埚的液化方法是增长的单晶生长的标准。在这里,我们表明这种广泛使用的方法通过纳克杂质损害了样品质量。我们发现,使用拉曼光谱,电阻率,磁化,光学的第三谐波产生,谐振X射线衍射和弹性X射线散射测量值,使用拉曼光谱,电阻率,磁化,磁性谐振X射线衍射和弹性X射线散射测量表现出与铂坩埚在其样品表征中生长的SR2IRO4单晶显示出与铂坩埚在其样品表征中的差异显着差异。特别是,我们表明,在没有铂杂质的样品的拉曼光谱中,相当强度的几个峰消失了,与先前报道的值相比,从电阻率数据中提取了明显更大的活化能。此外,我们没有发现先前报道的滑行对称性破坏结构扭曲的证据,并确认晶格对称性的I41/ACD空间组。尽管铂杂质在磁性特性中并不明显,因此很长一段时间以来在化学计量隔离阶段没有引起人们的注意,但它们的作用可能对化学掺杂化合物中的运输特性更有害。因此,我们的结果表明,使用生长方法避免铂杂质进行研究,以研究虹膜物质的内在物理特性和可能的超导阶段。
Iridates have attracted much interest in the last decade for their novel magnetism emerging in the limit of strong spin-orbit coupling and possible unconventional superconductivity. A standard for growing iridate single crystals has been the flux method using platinum crucibles. Here, we show that this widely used method compromises the sample quality by inclusion of platinum impurities. We find that Sr2IrO4 single crystals grown in iridium crucibles show remarkable differences from those grown in platinum crucibles in their sample characterizations using Raman spectroscopy, resistivity, magnetization, optical third harmonic generation, resonant X-ray diffraction, and resonant inelastic X-ray scattering measurements. In particular, we show that several peaks of sizable intensities disappear in the Raman spectra of samples free of platinum impurities, and a significantly larger activation energy is extracted from the resistivity data compared to previously reported values. Furthermore, we find no evidence of the previously reported glide symmetry breaking structural distortions and confirm the I41/acd space group of the lattice symmetry. Although the platinum impurities are not apparent in the magnetic properties and thus went unnoticed in the stoichiometric insulating phase for a long time, their effects can be much more detrimental to transport properties in chemically doped compounds. Therefore, our result suggests using growth methods that avoid platinum impurities for an investigation of intrinsic physical properties of iridates, and possible superconducting phases.