论文标题

Lisa的前景从一阶相变检测引力波背景

Prospects for LISA to detect a gravitational-wave background from first order phase transitions

论文作者

Boileau, Guillaume, Christensen, Nelson, Gowling, Chloe, Hindmarsh, Mark, Meyer, Renate

论文摘要

早期宇宙中的一阶相变可能会产生引力波背景,激光干涉仪空间天线(LISA)可能可以检测到重力波背景。这样的观察将为超出标准模型以外的物理学提供证据。我们研究了丽莎在整个宇宙中二进制黑洞合并的二进制黑洞合并的情况下,从相变的引力波背景观察到引力波背景的能力。将相变引力波背景建模为双重损坏的功率定律,我们将偏差信息标准作为检测统计量,而费舍尔矩阵和马尔可夫链蒙特卡洛方法来评估功率谱参数的测量精度。 While estimating all the parameters associated with the gravitational-wave backgrounds, foregrounds, and LISA noise, we find that LISA could detect a gravitational-wave background from phase transitions with a peak frequency of 1 mHz and normalized energy density amplitude of $Ω_{\text p} \simeq 3 \times 10^{-11}$.使用$ω_ {\ text P} \ simeq 10^{ - 10} $,如果峰频率在$ 4 \ times 10^{ - 4} $至$ 9 \ times 10^{ - 3} $ Hz $ 4 \ times 10^{ - 4} $中,则可以检测到该信号,并且可以估计峰值和频率的精度为10 \%\%\%。

First order phase transitions in the early universe could produce a gravitational-wave background that might be detectable by the Laser Interferometer Space Antenna (LISA). Such an observation would provide evidence for physics beyond the Standard Model. We study the ability of LISA to observe a gravitational-wave background from phase transitions in the presence of an extragalactic foreground from binary black hole mergers throughout the universe, a galactic foreground from white dwarf binaries, and LISA noise. Modelling the phase transition gravitational wave background as a double broken power law, we use the deviance information criterion as a detection statistic, and Fisher matrix and Markov Chain Monte Carlo methods to assess the measurement accuracy of the parameters of the power spectrum. While estimating all the parameters associated with the gravitational-wave backgrounds, foregrounds, and LISA noise, we find that LISA could detect a gravitational-wave background from phase transitions with a peak frequency of 1 mHz and normalized energy density amplitude of $Ω_{\text p} \simeq 3 \times 10^{-11}$. With $Ω_{\text p} \simeq 10^{-10}$, the signal is detectable if the peak frequency is in the range $4 \times 10^{-4}$ to $9 \times 10^{-3}$ Hz, and the peak amplitude and frequency can be estimated to an accuracy of 10\% to 1\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源