论文标题

部分可观测时空混沌系统的无模型预测

Spectral mapping theorem of an abstract non-unitary quantum walk

论文作者

Asahara, Keisuke, Funakawa, Daiju, Segawa, Etsuo, Suzuki, Akito, Teranishi, Noriaki

论文摘要

本文延续了本文的两位作者的先前作品(量子信息过程(2019)),介绍了手学对称统一操作员的光谱映射属性。在物理学中,他们将非自动的时间进化操作员考虑在开放系统中考虑量子行走。在本文中,我们将上述结果推广到包括手性对称的非独立操作员,其硬币操作员只有两个特征值。结果,此类非独立运算符的光谱被包括在(可能是非单位)圆和复杂平面中的真实轴中。我们还举例说明了我们的抽象结果,例如Mochizuki等人定义的非单身量子步行。此外,我们向Ihara Zeta函数提出了应用程序,并在常规图上进行了与量子步道相关的随机步行。

This paper continues the previous work (Quantum Inf. Process (2019)) by two authors of the present paper about a spectral mapping property of chiral symmetric unitary operators. In physics, they treat non-unitary time-evolution operators to consider quantum walks in open systems. In this paper, we generalize the above result to include a chiral symmetric non-unitary operator whose coin operator only has two eigenvalues. As a result, the spectra of such non-unitary operators are included in the (possibly non-unit) circle and the real axis in the complex plane. We also give some examples of our abstract results, such as non-unitary quantum walks defined by Mochizuki et al. Moreover, we present an application to the Ihara zeta functions and correlated random walks on regular graphs, which are not quantum walks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源