论文标题
擦除网络:汽车雷达信号的有效分割网络
ERASE-Net: Efficient Segmentation Networks for Automotive Radar Signals
论文作者
论文摘要
在辅助和自主驾驶系统的各种传感器中,即使在不利的天气或照明条件下,汽车雷达也被认为是一种健壮且低成本的解决方案。随着雷达技术的最新发展和开源的注释数据集,带有雷达信号的语义分割变得非常有前途。但是,现有方法在计算上是昂贵的,或者通过平均将其减少到2D平面,从原始3D雷达信号中丢弃了大量的有价值的信息。在这项工作中,我们引入了Erase-Net,这是一个有效的雷达分割网络,以语义上的原始雷达信号。我们方法的核心是新型检测到原始雷达信号的段方法。它首先检测每个对象的中心点,然后提取紧凑的雷达信号表示,最后执行语义分割。我们表明,与最新技术(SOTA)技术相比,我们的方法可以在雷达语义分段任务上实现卓越的性能。此外,我们的方法需要减少20倍的计算资源。最后,我们表明所提出的擦除网络可以被40%压缩而不会造成大幅损失,这比SOTA网络大大高,这使其成为实用汽车应用程序更有希望的候选人。
Among various sensors for assisted and autonomous driving systems, automotive radar has been considered as a robust and low-cost solution even in adverse weather or lighting conditions. With the recent development of radar technologies and open-sourced annotated data sets, semantic segmentation with radar signals has become very promising. However, existing methods are either computationally expensive or discard significant amounts of valuable information from raw 3D radar signals by reducing them to 2D planes via averaging. In this work, we introduce ERASE-Net, an Efficient RAdar SEgmentation Network to segment the raw radar signals semantically. The core of our approach is the novel detect-then-segment method for raw radar signals. It first detects the center point of each object, then extracts a compact radar signal representation, and finally performs semantic segmentation. We show that our method can achieve superior performance on radar semantic segmentation task compared to the state-of-the-art (SOTA) technique. Furthermore, our approach requires up to 20x less computational resources. Finally, we show that the proposed ERASE-Net can be compressed by 40% without significant loss in performance, significantly more than the SOTA network, which makes it a more promising candidate for practical automotive applications.