论文标题

拓扑阶段的复合系统的特性,该系统通过可解决的哈密顿模型分隔为宽大的域壁

Characteristic Properties of a Composite System of Topological Phases Separated by Gapped Domain Walls via an Exactly Solvable Hamiltonian Model

论文作者

Zhao, Yu, Huang, Shan, Wang, Hongyu, Hu, Yuting, Wan, Yidun

论文摘要

在本文中,我们构建了一个准确的可解决的晶格哈密顿模型,以研究由多个拓扑顺序组成的复合系统的特性,该系统由多个拓扑顺序组成。该系统的不同域中的一对Anyons标记了域间的基本激发。该系统还具有基本的激发,并在间隙域壁上具有准粒子。每组基本激发都对应于圆环上该复合系统的基态的基础,这反映了基态堕落质量与两组基本激发的数量相匹配。该复合系统的特性属性在于基础转换,以$ s $和$ t $矩阵表示:$ s $矩阵编码域间激发与域间壁式粒子之间的相互统计数据,$ t $矩阵封装了域间激发的拓扑。我们的模型实现了由Anyon凝结触发的时间相变的空间对应物,将任何Anyon凝结的抽象理论带入了明显的空间间跨间激发状态。

In this paper, we construct an exactly solvable lattice Hamiltonian model to investigate the properties of a composite system consisting of multiple topological orders separated by gapped domain walls. There are interdomain elementary excitations labeled by a pair of anyons in different domains of this system; This system also has elementary excitations with quasiparticles in the gapped domain wall. Each set of elementary excitations corresponds to a basis of the ground states of this composite system on the torus, reflecting that the ground-state degeneracy matches the number of either set of elementary excitations. The characteristic properties of this composite system lie in the basis transformations, represented by the $S$ and $T$ matrices: The $S$ matrix encodes the mutual statistics between interdomain excitations and domain-wall quasiparticles, and the $T$ matrix encapsulates the topological spins of interdomain excitations. Our model realizes a spatial counterpart of a temporal phase transition triggered by anyon condensation, bringing the abstract theory of anyon condensation into manifestable spatial interdomain excitation states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源